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Chapter 1

Introduction

For humans vision is the primary sensory system to obtain information about the world.
The field of computer vision aims at translating capabilities of the human vision system to
algorithms through mathematical techniques. In recent years there has been a lot of research
conducted in visual-guided robotics. Although robots usually have multi-modal sensing sys-
tems, visual sensors play a crucial role in gathering information about the world around
them. This is especially true for mobile robots in human environments, which in contrast
to the repetitive tasks of industrial robots, are often faced with dynamic and unstructured
environments. Visual-control has been applied for various robotics tasks, e.g.,mobile robot
navigation [1], vision-based lateral control [2], automated warehouse applications [3], UAV
applications [4].

Early visual-servoing approaches relied heavily on prior knowledge of the robot-camera system
and used hand-crafted visual features with a fixed hand-tuned controller. It was assumed
that the camera calibration parameters are correct and the robot forward kinematics model
is known. However these assumptions do not hold in most cases.

In recent years there has been an increasing trend of incorporating robot learning techniques
in visual servoing in order to increase flexibility and decrease the need for hand-crafted fea-
tures. Learning techniques can be applied in several areas within visual servoing e.g., learning
internal models, for automatic feature extraction and for obtaining a control strategy. Deep
reinforcement learning (DRL) algorithms have been proven a promising approach to achieve
pixel-to-torque control. DRL learning made its first widely successful appearance in 2012,
when DeepMind used it for automating the Atari game [5]. It was demonstrated that control
policies can be obtained directly from high dimensional input data by combining deep learning
and reinforcement learning. Since then it has been shown to provide an improved performance
in a number of different fields, including natural language processing [6], self-driving cars [7],
and robotics [8], [9].

Figure 1-1 depicts the structure of document. This literature survey focuses on the approaches
of incorporating learning in the vision-based control. For this it is necessary to discuss the
visual servoing framework. The first part of this literature survey aims at giving an overview of
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4 Introduction

vision-based control strategies in robotics (Chapter 2). In the following chapters possible ways
of including learning techniques in the visual servoing framework are introduced along with
their related theoretical concepts and examples of applications. Chapter 3 focuses on learning
control, with an emphasis on reinforcement learning algorithms. Chapter 4 discusses learning
in perception, with a focus on deep learning techniques. In the last chapter vision-based Deep
Reinforcement Learning is discussed, where learning is incorporated in both perception and
control.

Figure 1-1: Document structure
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Chapter 2

Vision-based control: overview

In visual servoing computer vision data is used to control the motion of the robot. Using visual
information for control applications dates back to the 1970s, and since then it has been applied
to a variety of problems [10] [11]. An important transition in visual servoing for robotics is
moving from structured industrial environment to unstructured dynamic environments, where
the robot has to explore its surroundings via sensory readings and adapt its behaviour based
on these observations [12].

In the first visual servoing approaches the vision information was used in a complementary
fashion to a low-level control system (e.g., joint-angle servo control system relying on encoder
feedback information). The motivation for incorporating vision in the control system was to
monitor the final position error, which is caused by parameter inaccuracies in the forward
kinematic system [13]. Since then the focus in visual servoing research has shifted towards
direct visual servoing, where visual information is used as the primary feedback information in
the control system. When using directly the visual data, uncertainties from the camera system
have to be accounted for in addition to the uncertainties from the robot kinematic model .
Various approaches have been proposed to overcome problems with parameter uncertainties
in the robot-camera system. e.g., Kalman-filter or neural network based parameter estimation
algorithms.

There are several advantages of using only visual information as feedback in the control loop.
Cameras are easily available and inexpensive sensors, which is an important aspect for mobile
robots. They also provide rich information about the environment. On the other hand,
extracting relevant information from high-dimensional observations is challenging, especially
in real-time applications.

This chapter introduces the basic components and the terminology of the visual servoing
framework, together with the basic control approaches and camera configurations. Then the
main components and challenges in visual servoing are introduced. An overview of learning-
free vision-based control attempts to the inverted pendulum problem is also given. Lastly,
the chapter opens the question, where can improvements be made by using machine learning
techniques.

Literature Survey A. Deichler



6 Vision-based control: overview

2-1 The visual servoing framework

2-1-1 Coordinate frames and camera configurations

Robotic tasks are often defined with respect to one or more coordinate frames. Typically there
are four coordinate frames distinguished in the visual servoing framework: the coordinate
frame attached to the camera Φc, the coordinate frame attached to the object (target) Φo,
the coordinate frame attached to the robot and effector Φe and the base frame of the robot
Φ0.
The two main basic camera-robot configurations are the eye-in-hand and the eye-to-hand
configurations. In the eye-in-hand configuration the camera is fixed on the robot, a constant
relationship exists between the pose of the camera and the pose of the end-effector. In the
eye-to-hand configuration the camera is in a fixed location in the world frame. The camera
is often related to the robot base frame.
The eye-in-hand configuration (Figure 2-1) is usually used in mobile robot navigation, or in
precision positioning tasks. In case of the eye-to-hand (Figure 2-2) configuration the geometric
relationship between the workspace and the camera is fix, therefore offline calibration is
possible.
Camera calibration is necessary in both cases of camera configurations in order to determine
the intrinsic parameters of the camera, such as focal length, pixel pitch and principal point.
The fixed camera pose with respect to the world coordinate system is also stored as the
extrinsic parameters of the camera. In case of the eye-in-hand configuration, the calibration
between end-effector and camera is also stored.

Figure 2-1: Eye-in-hand visual servoing
configuration

Figure 2-2: Eye-to-hand visual servoing
configuration

2-1-2 The error function

In traditional visual servoing approaches, the aim is to actuate the robot to minimize the
error e defined between a current and a goal configuration expressed in features (f) derived
from the image information. The error is typically defined as:

e(t) = f(m(t), a) − f∗(t) (2-1)
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2-1 The visual servoing framework 7

The m(t) vector contains the image measurements for each time instant t, a is a set of param-
eters representing additional knowledge (e.g., 3D object model, camera intrinsic parameters).
The visual features used for control is represented by f , the desired target value of this
features by f∗ [14].

2-1-3 Main approaches in visual servo control

Based on the used image information for control (f), two main approaches are distinguished
within visual servo control.

Image-based visual servoing (IBVS) uses 2D information directly for calculating the next
best robot motion. The features used for control are defined in the 2D image plane in
image features s. This set of image features usually consists of image coordinates of points
belonging to the target object, a projection of a physical feature of the target object to
the camera plane.The parameters a are the camera intrinsic parameters, used for calculating
features from image measurements. Image-based visual servoing control laws are based on the
image Jacobian (interaction matrix), which represents the differential relationship between
the camera frame motion and motion of features on the image plane. The image Jacobian
can be derived analytically by the perspective projection model [15].

ṡ =
�∂s

∂r

�dr

dt
= Jsṙ (2-2)

where r ∈ R3 represents the camera’s pose in Cartesian coordinates and s ∈ Rn are the image
features, and n is the number of used features. Most IBVS approaches compute the camera
velocity sent to the controller [16]. This can be calculated as in 2-3.

ṙ = λ(Ĵ+
s (s − s∗)) (2-3)

Where Ĵ+
s is an estimation of the pseudo-inverse of the image Jacobian Js, and λ is a pro-

portional gain. The IBVS control scheme is depicted on Figure 2-3.

Figure 2-3: Image-based visual servoing
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8 Vision-based control: overview

Position-based visual servoing (PBVS) uses 3D image information for control. Image
measurements are used to estimate the object pose r̂ in Cartesian coordinates. In PBVS the
task Jacobian is defined as:

Jr̂ =
�∂r̂

∂s

��∂s

∂r

�
(2-4)

The second term is the same image Jacobian as in 2-3. The first term represents the variation
of the estimated pose as a function of the feature variation, which is unknown and depends
on the visual features, shape of the object, camera calibration parameters and the used pose
estimation algorithm. In this case the additional knowledge assumed to be known (a) are the
camera intrinsic parameters, the 3D model of the object and the robot kinematic model. [16].
The PBVS control scheme is depicted on Figure 2-4.

Figure 2-4: Position-based visual servoing (from [12])

The preferred visual sevoing approach used to be IBVS due to its better robustness properties
[12]. Kinematic model uncertainties of the robot and calibration can be avoided since it
does not require 3D reconstruction. However, sensitivity to lighting conditions and occlusion
cannot be eliminated. In the past, PBVS methods had to rely on stereo triangulation to obtain
depth information for pose estimation. This limited the applicability of PBVS methods, since
feature extraction and correspondence matching require long processing times and do not
work well in low-textured environments. Recently RGB-D cameras have become a popular
alternative to obtain depth information in PBVS methods. These sensors are now available at
low prices and provide fast depth information. Compared to stereo camera systems, RGB-D
sensor are also better at handling occlusion and less sensitive to lighting conditions.

2-1-4 Tracking and control

The two subsystems of visual servo control are tracking (perception) and control (Figure 2-
5). Earliest approaches in vision-based control used the "look-then-move" scheme, where the
subtasks of visual information extraction and control are executed in sequence. In real-time
applications it is necessary that the two subsystems are intertwined, executed continuously
[11].

Tracking The tracking/perception subsystem extracts and tracks visual features. In real-
time visual servo systems it is important to know the expected location of the target object.
An overview of recent approaches is given in [17] about approaches for feature tracking in
visual servoing.
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2-2 Literature overview on vision-based control of the inverted pendulum 9

Figure 2-5: Main componentes of the visual servo system (from [11])

The two main approaches in tracking are 2D and model-based 3D tracking. 2D approaches
are either feature-based, which use geometric features (pints, contours, shapes) or intensity-
based, which use histograms. In 3D tracking all 6 Degrees of freedom (DoF) of the target
object (position and orientation) are estimated continuously using a 3D model of the object.

In visual servoing the main requirements for the tracking algorithm are robustness, accuracy,
speed and generality. 3D methods are in general more robust, since they can handle partial
occlusion better and are less sensitive to lighting conditions than 2D methods. Incorporat-
ing a motion model can make the tracking more accurate in visual servoing applications. In
Bayesian tracking the target location is estimated through a filtering process and the tar-
get movement is predicted using noisy observations (images) of the target’s position and a
dynamic model of the target’s motion. Bayesian trackers are often used in visual servoing
applications [18].

Control Traditional visual servoing control systems assume knowledge about kinematic pa-
rameters of the robot and the camera intrinsic and extrinsic parameters are known. The
control strategies usually involve calculating the task Jacobian based on these parameters
and deriving a control law for the end-effector velocity [19].

2-2 Literature overview on vision-based control of the inverted
pendulum

With regards to the topic of this thesis, this section of the literature review gives an overview
of vision-based control approaches for the inverted pendulum problem. Herein, approaches
that do not or employ learning techniques are presented. A common factor amongst these
publications is the use of an ad hoc experiment setting, which is designed to facilitate the
recognition of the pendulum on the input images (e.g. homogenous background, using land-
marks).
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10 Vision-based control: overview

Fuzzy-logic Control of an Inverted Pendulum with Vision Feedback

In [20] a fuzzy-logic based controller is proposed for the cart-pole system. The tracking/per-
ception system is highly dependent on the experiment set-up. The pendulum is painted black,
while the background is white, the recognition of the pendulum is based on the contrast change
in the image pixels using simple trigonometric functions. The fuzzy-logic controller uses a
triangular membership function to fuzzify the measured angles. Fuzzy rules for the angle and
angular velocity are based on heuristics, on the knowledge of the experimental setup. This
vision based controller is limited in time to a few seconds of keeping the pendulum upright.
The pendulum is managed to be balanced near the unstable equilibrium zone not exceeding
5 °, the control system is too slow to compensate larger deviations.

Vision-Based Control of an Inverted Pendulum Using Cascaded Particle Filters

In [17] a vision-based feedback controller for the cart-pole system, which uses Bayesian trackers
to keep track of the position of the cart an the angle of the pendulum. Specifically, a cascaded
set of particle filters are used, there are separate cameras for the cart location and the pole
angle. Similarly to the previous approach, gradient based edge detection is used to locate the
pendulum on the images. The measurement updates are provided at 30Hz. Swing-up and
balancing of the pole is managed in a real setting. However, on-site calibration of the camera
system is needed to make it robust against distortions and the experiment set-up is designed
to facilitate recognition.

2-3 Potential problems and uncertainties in visual servo control
systems

The main problems related to tracking are the limits of the camera field of view and feature
extraction from the images. Effective and accurate feature extraction can be impeded by
illumination of the image scene, occluded target objects, or camera sensor noise. In IBVS
approaches the features are limited to geometrical primitives (segments, contours), while the
analytical form of the interaction has to be derived for them separately. This limits the
applicability of these approaches to structured settings [16].

The main problems related to the control are inaccurate camera calibration, feedback delays
from image processing and sensor measurement noise. As a result of these inaccuracies the
image Jacobian is also inaccurate, leading to stability problems in IBVS control. Parameter
inaccuracies also cause the camera pose estimate in the PBVS methods to be non-robust.
Stability problems in PBVS and IBVS are discussed in [16].
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2-4 Learning in the visual servoing framework 11

2-4 Learning in the visual servoing framework

In the traditional vision-based robotic control pipeline (depicted on Figure 2-6) four main
components can be distinguished: feature design, feature detection, feature tracking and
control. All these elements required human engineering and domain knowledge in the past.
In recent years many different approaches have been taken to incorporate machine learning
into these steps in order to reduce the need for human-crafted designs. Learning approaches
can also be used to overcome problems mentioned in the previous section.

Machine learning studies algorithms that can learn and make predictions from data. Machine
learning can be applied to multiple problems within robotics. The intersection of robotics
and machine learning is called robot learning, in which a robot has to acquire new skills,
perform tasks autonomously in an unstructured environment through learning algorithms.
In robot learning approaches relevant information from high dimensional sensory readings is
automatically extracted to solve the robotic task [21].

The two sub-fields of robot learning, which are relevant for visual servoing are learning to
perceive through visual sensory readings and learning control.

Figure 2-6: The traditional visual servoing pipeline

The following chapters investigate existing approaches of incorporating learning in the visual
serving framework and introduces the necessary background information for these methods.
Chapter 3 discusses learning control for vision-based robot control applications by introducing
the reinforcement learning (RL) robotics framework, the main challenges related and the
basics of RL algorithms which have been used in recent vision-based control publications.
Chapter 4 discusses methods of incorporating learning in the perception part of the traditional
vision-based robot control pipeline (feature extraction, detection, tracking). Deep learning
is introduced as a form of representation learning and control relevant deep neural network
architectures are introduced. State representation learning approaches within the RL are also
discussed. In Chapter 5 recent publications incorporating learning in perception and control
are presented.
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Chapter 3

Learning control in visual servoing

One of the main drawbacks of traditional visual servoing control methods is that they as-
sume prior knowledge about the robot forward kinematics, the camera model and use fixed
controllers with hand-tuned gains. These robot and camera models however are not always
available, inaccurate and can vary over time. There have been different approaches proposed
in the past to overcome these problems, such as uncalibrated visual servoing methods and
adaptive controller methods. Learning control frameworks provide a way to increase the flex-
ibility of the control system. In learning robot control the aim is to acquire a sensory-motor
control strategy for a particular task and system by trial and error [21].

In the visual servoing framework teacher-based and critic-based learning algorithms have
been both applied. Teacher based learning methods include learning by demonstration and
supervised learning. In the former approach the teacher provides a model of ’good behaviour’,
which usually means a video sequence of the movement to be learned [22]. In supervised
learning methods the provided training data consists of input-output pairs of the function to
be learned [23]. Reinforcement learning (RL) algorithms on the other hand involve a critic,
and no idealized behaviour is available. The control policy has to be learned by trial and
error based on a scalar reward.

RL is an area of machine learning where an agent learns how to behave from interacting with
the environment in order to achieve a desired goal [24]. Traditionally RL algorithms have
been applied and benchmarked on discrete, small scale problems. The application of RL to
robotics problems poses several challenges e.g., the high dimensionality, uncertainty of real
physical systems, sensory delays [25].

This chapter focuses on the application of RL to visual servoing problems. First the theoret-
ical framework of RL is introduced and a basic taxonomy of the RL approaches is provided.
Then the challenge of the high-dimensionality of vision-based robotics problems is discussed
with a brief overview of recently proposed solutions, which is followed by a more detailed de-
scription of these algorithms. Finally, application examples are given in a literature overview
of approaches in the visual servoing context, which use learning in control, but not in percep-
tion.
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14 Learning control in visual servoing

3-1 The RL problem robotics formulation

Formally the RL problem can be introduced in the framework of a Markov decision process
(MDP). An MDP is a mathematical framework for decision making problems and can be
described by a tuple of five elements: M = �X, U, P (·, ·), ρ(·, ·), T � , where

• X is a set of states, called the state space

• U is a set of actions, called the action space

• P is the state transition probability function, it maps each state-action pair to a distri-
bution over successor states: P : (X × U × X) → [0, ∞)

• ρ is the reward function r : X × U × X → R

• T is the time horizon

State transitions of an MDP have to satisfy the Markov property, the next state depends on
the current state and action.

The two main components of the RL problem are the agent and the environment (Figure
3-1). The agent is the decision-maker, the environment is everything that is external to the
agent. The agent senses the environment states (x) and takes actions (u), which modify the
environment states. The actions taken by the agent in a given state are evaluated by the
task-specific scalar reward function (reinforcement) of the environment. The reward function
can defined in different ways, e.g., rt+1 = ρ(xt, ut, xt+1), including the transitions, or as
rt+1 = ρ(xt, ut), depending on only the current state and action [25].

Figure 3-1: The RL problem, from [25]

In the visual servoing setting the agent is the robot, which has no access to the true state.
It obtains only incomplete and noisy information about the world through high-dimensional
sensory readings in the form of images. The learning algorithm has to with this incomplete
state information. Memory is needed to be incorporated into the algorithm in order to
determine states that are partially observable from successive states. These types of problems
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3-1 The RL problem robotics formulation 15

can be modelled by a Partially Observable Markov Decision Process (POMDP). POMDPs are
commonly used in robotics problems, since they allow reasoning about uncertainty, through
the introduction of the belief state. Another option is to keep the MDP formulation and
extend the state with the previous state(s). This leads to a higher dimensional state space,
but algorithms for the MDP formulation can be applied, since the Markov property is retained.

The actions are motor commands (u) and together with the states they form a trajectory
τ=(x0, u0..). Robotic tasks are often episodic, with an episode ending after T time steps. The
accumulative reward (return) collected along a trajectory τ can be written in the following
way:

R(τ ) = ρT (xT ) +
T −1�

t=0
γtρ(xt, ut) (3-1)

, where γ ∈ (0, 1) is the discount factor, rating recent rewards higher and ρT is a final reward.
The goal of the robot is to maximize the expected cumulative reward, which is given for
the quality of the trajectory. This can be achieved by learning a mapping from states to
actions. The mapping is called policy function π. In most robotic applications the policy π
is time-dependent and can be stochastic π(ut|xt, ut). The policy is said to be optimal π∗ if
it maximizes the expected accumulated reward for every initial state x0.

The expected return is denoted by Jπ and can be expressed in the following way:

Jπ = E[R(τ |π)] =
�

R(τ )Pπ(τ )dτ (3-2)

,where Pπ(τ ) is the probability of a trajectory under the policy π and state transition dy-
namics.

Every policy can be characterized by its unique state-action value function Qπ : X × U → R.
Computing the state-action value function for a policy is called policy evaluation.

Qπ(x, u) = E[rt+1 + γrt+2...|x, u] (3-3)

The state-action function gives the return for following the policy after an initial state-action
pair. Under the optimal policy, the value of a state-action pair must be equal to the expected
return for the best action from that state (This is expressed by the Bellman optimality
equation).

In general the optimal policy π∗ can be found by solving the following optimization problem:

π∗(x) ∈ argmax
u

Jπ (3-4)
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16 Learning control in visual servoing

3-2 RL algorithm taxonomy

This section gives a brief taxonomy of the existing RL approaches in order to discuss algo-
rithms in later sections. A more extensive overview is provided in [25], [26].

3-2-1 Model-based and model-free algorithms

Reinforcement learning algorithms can be classified as model-free (direct) or model-based
(indirect) based on the steps of obtaining the policy [25].

Model-free algorithms In these algorithms the agent does not know the transition prob-
abilities and reward function. The controller is obtained from directly interacting with the
environment through learning the value function or the policy. One drawback of model-free
learning algorithms is that that they require a large number of training episodes to find a
solution [27].
Model-based algorithms assume an explicit model of the environment. The system model
is jointly learned with the value-function/policy based on collected data. This method is also
called indirect learning, because of the intermediate step of model learning (e.g. environment
model). For robotics applications model-based algorithms have the advantage of requiring less
interactions with the environment by learning from simulations in addition to learning from
real interactions. The main drawback is that the unknown dynamics cannot be accurately
modeled for effective policies [25],[21].

Figure 3-2: RL algorithms (from [24])

3-2-2 Policy-based and Value function-based algorithms

Three different groups of algorithms can be distinguished based on the data structure they
maintain and update: value-function based algorithms, policy-based algorithms and actor-
critic algorithms [25].
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3-2 RL algorithm taxonomy 17

Value-based algorithms are also called critic-only algorithms. These algorithms first esti-
mate the value function (3-3), the long term expected reward of a policy for each state and
time step, then derive the controller (mapping from states to actions) based on the estimated
value function. Value-function based RL algorithms can be classified into three categories:
Monte Carlo methods, temporal difference (TD) methods and dynamic programming bases
optimal control approaches.

Policy-based algorithms maintain a parametrized policy (actor) πθ and search for the
optimal policy in the neighbourhood of the current policy. The mapping from observations to
actions is learned directly, without estimating a value function. In robotic applications policy
search methods have several other advantages over the value function methods, e.g. it allows
the incorporation of expert knowledge through policy parametrization and initialization [25].
The existing policy search algorithms can be grouped into three categories: policy gradient,
expectation-maximization and information theoretic [26].

Actor-critic algorithms incorporate the advantages of both value function-based and policy-
based methods by maintaining and updating both the value function and the policy. The
policy is explicitly maintained (e.g. function approximator) in addition to the value function
for the current policy. The critic estimates the action-value function using a policy evaluation
algorithm (e.g. Temporal-difference learning). The actor adjusts the policy parameters θ by
gradient ascent [25],[26].

3-2-3 Online and batch learning

Online RL algorithms continuously improve the policy as the environment is explored, the
solution is estimated and the process is controlled simultaneously, updates are made after
each new experience.

In batch algorithms at each iteration i trajectories are generated and the data collected along
the trajectory is stored τ t = {xi

t, ui
t, ri

t}T
t=0 . Updates occur synchronously in the whole batch

of transitions (e.g. value-fitted policy iteration [28]).

3-2-4 On-policy and off-policy learning

On-policy explore the environment using the current policy, therefore an exploration compo-
nent has to be built in the policy in order to ensure proper exploration of the state space.
This can be achieved by executing actions using soft policies. The value function can only be
updated based on experience.

Off-policy methods use an exploration strategy that is independent of the current policy to
learn about the environment. Different policies can be learned for exploration behaviour and
value function estimation, which makes it possible to separate estimation from control. Off-
policy algorithms can update the estimated value functions using hypothetical actions, not
only based on experience as in the on-policy case [25].
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18 Learning control in visual servoing

3-3 The problem of high-dimensional state and action spaces

In vision-based control both action and state spaces are high-dimensional. Information about
the environment is provided by images, making the observation/state space high-dimensional.
The control action is also real valued and high-dimensional. Applying RL algorithms in large
scale problems, such as games or real-world problems with continuous variables brings up
several challenges and have been studied for a long time [25].

Value approximation based RL approaches for large observation spaces have been proposed.
In case of value-function approaches with small action and state spaces the approximate
value function can be represented by a table. For complex environments with high dimen-
sional/continuous state and action spaces the table size can become very large, resulting in
tabular representation being computationally intractable. There are two approaches to solve
continuous-state RL problems: discretizing the state space with grids or using a function ap-
proximator. Discretizing the state/action space leads to computational intractability due to
the curse of dimensionality. For higher-dimensional robotic problems function approximations
(e.g., wire-fitting [29], neural networks) provide a more suitable alternative. Neural network
based function approximations have the advantage of being differentiable. In neural network
based value function approximations the tabular representation is replaced by a neural net-
work, whose inputs are states and actions and the output is the utility of the state-action
pair. This makes generalization from seen states to unseen states possible [25].

However by using neural networks as function approximators for the value-function, conver-
gence and stability guarantees do not hold anymore [25]. It has been shown that NN based
value-function approximation RL algorithms using online gradient descent do not converge
[30]. Two different approaches have been proposed to resolve the stability problems in NN
based value-function approximation RL algorithms. One of them is the Neural Fitted Q Itera-
tion (NFQI) [28] algorithm, which will be presented in the next section along with Q learning.
The other is the Deep Q Network (DQN) [5] algorithm using a deep neural network. This
algorithm and its applications in robotics will be presented in Chapter 5, after discussing the
basic ideas of deep learning in Chapter 4.

In the NFQI and DQN algorithms the action space is assumed to be discrete. Both value
function based and policy based approaches have been proposed for dealing with continuous
action spaces in robotics. The Neural Fitted Q-iteration with Continuous Actions (NFQCA)
[31] is a value approximation RL algorithm, a variant of the NFQ algorithm for continuous
action spaces. The double-DQN algorithm [32] is a variant of the original DQN network for
continuous action spaces. The Deterministic Policy Gradient (DPG) algorithm [33] is a policy
based algorithm, also for dealing with high-dimensional action spaces. The Deep Deterministic
Policy Gradient (DDPG) [27] is and actor-critic RL algorithm with neural network function
approximators, which is based on the DPG network. The Deep Deterministic Policy Gradient
algorithm (DDPG) [27] has been applied successfully to real world robotics problems [9].

The DQN, NFQI or DPG/DDPG algorithms will be discussed in more detail, since many
recent publications in vision-based robotics build on the variants of these algorithms. The
NFQI and DPG algorithms do not use deep neural networks as function approximators,
therefore there are presented in this chapter. The DDPG and DQN algorithms, which employ
deep neural networks will be presented in Chapter 5, after the introduction to deep neural
networks in Chapter 4.
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3-4 Value function based algorithms in vision-based RL

Q learning

Q learning is an off-policy temporal-difference (TD) value-function based algorithm, where
the state-action values are incrementally estimated at each time step based on reward received
from the environment and the agent’s previous Q-value estimates. In tabular methods direct
Q value assignment can be made, a table is maintained to store the Q-values for the state
and action set pairs. In neural network value function approximations an error function is
introduced, which measures the difference between the current Q value and the target Q
value. The Q network is the neural network based approximation of the value-function:

Q(x, u, w) ≈ Qπ(x, u)

The mean-squared error in Q-values can be written as:

L(w) = E
��

r + max
u�

Q(x�, u�, w) − Q(x, u, w)
�2�

(3-5)

Neural-Fitted Q Iteration

The Neural Fitted Q Iteration (NFQ) algorithm [28] has been proposed to confront the
stability problems arising from using gradient descent for weight parameter adjustment in 3-
5. Classical Q learning estimates the Q function online, only the current environment feedback
is used for weight adjustment. The NFQ algorithm uses a memory of a set of experiences,
collected in tuples {x, u, x�} to train the neural network instead of online updates. As a result
batch NN learning techniques can also be applied [28].

The NFQ algorithm is one approach to confront the stability problems of the naive Q learning
algorithm. The DQN algorithm is a different approach, which will be presented in Chapter 5.

3-5 Policy based algorithms and actor-critic algorithms in vision-
based RL

Policy search methods use parametrized policies πθ and typically avoid learning a value func-
tion. In contrast to most value-function based RL algorithms they do not bootstrap, the
experienced reward is directly used for quality assessment of state-action pairs. The three
classes of algorithms are policy gradient (PG), expectation maximization (EM) and informa-
tion theoretic [26].

3-5-1 The Deterministic Policy Gradient algorithm

Policy gradients have been proven to be a promising approach to confront the high/contin-
uous dimensionality of large scale/robotics problems, since they do not suffer from the lack
of guarantees of a value function, the intractability problem resulting from uncertain state
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information and the complexity arising from continuous states and actions. In case of stochas-
tic policy π(u|x) gradients, the policy gradient is estimated from data generated during the
execution of a task [34]. Policy gradient methods are based on the policy gradient theorem
[24]. The general goal in policy gradient algorithms is to optimize the policy parameters θ,
so that the expected return is optimized:

J(θ) = E
� T�

t=1
γtrt|πθ

�
(3-6)

The Deterministic Policy Gradient (DPG) algorithm [33] maintains a deterministic policy
u = µθ(x), which specifies the current policy by deterministically mapping states to a spe-
cific action and has been shown to outperform their stochastic counterparts in case of high-
dimensional action spaces [33].

3-5-2 Guided Policy Search algorithm

The Guided Policy Search [35] (GPS) trains complex policies, such as deep neural network
using supervised learning. Trajectory optimization is solved with RL separately from a fixed
number of initial states. The outcomes of these separate trajectory optimization problems are
linear Gaussian controllers, optimized for the given initial state and goal position. The final
policy unifying the pre-trained controllers is obtained with supervised learning, which allows
the use of a high-dimensional policy representation, such as a multilayer neural network. As
a result complex behaviours can be obtained with good generalization.

3-6 Literature overview of RL based approaches in visual servoing
without automatic feature extraction

This section provides a brief overview of approaches for visual servoing which use learning
in control, but not in the perception part of the visual servoing pipeline (Figure 2-6). Up to
recently, perception and control were not integrated tightly due to the lack of tools to deal
with high dimensional, ambiguous an noisy sensory data. The perception systems in these
approaches are simplified and use heavily preprocessed data [25].

Reinforcement learning has been used in many vision-based robotic applications: learning to
shoot a ball ([36], target tracking with mobile robot[29] , for docking tasks [37], mobile robot
obstacle avoidance [38] and for visual set-point regulation with an industrial robotic arm [39].

Among the chosen examples most use a variant of the Q learning algorithm:[36] uses the stan-
dard Q learning algorithm, [29] uses model-free NN based Q learning, [39] uses model-based
an model-free RFQI algorithm, [37] uses model-based Q learning with the adjoining property
from optimal control , with the exception of [38] which used a policy search algorithm. One
common point of these RL based approaches is that they extract some high-level information
about the observed scene that is relevant to the task, which is fed to the RL based controller.
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Reinforcement Learning for Visual Servoing of a Mobile Robot

In [29] multi-layer perceptrons are used to learn wandering behaviour and visual servoing.
A mobile robot is trained to wander and track a target in real time. The approach uses
reinforcement learning to learn a direct mapping from image space and other state information
to the actuator. The proposed algorithm uses Q learning with artificial neural network and
wire-fitting for interpolation to face the increased dimensionality of the continuous state and
action spaces. The NN input is the state, the output is set of actions and their values, which is
a sample of the Q function. The wire-fitting interpolation method generalizes between these
states. They achieve inferior performance compared to calibrated visual systems, but gain
flexibility, since the algorithm still works if the camera is moved, or the system changes.

Fast Reinforcement Learning for Vision-guided mobile robots

In [37] a vision-based RL control solutions is presented for the problem of navigating a non-
holonomic mobile robot to a table. State space discretization is proposed to confront the
continuous state space problem in real world robotics application. To overcome discretiza-
tion problems, the adjoining property is introduced to Q learning. The standard Q-learning
assumes unordered states (nominal numbers), their approach exploits the natural ordering of
sensory state spaces by only allowing transitions between neighbouring states. By enforcing
the adjoining property and by applying memory-based sweeping they acquire faster Q learning
. The approach requires no calibration, nor geometric models and is robust to perturbations
and noise.

Model-based and Model-free Reinforcement Learning in Visual Servoing

In [39] an approach to uncalibrated visual servoing is presented for visual set-point regulation
with a robotic Puma arm. First the visual-motor forward kinematics model is estimated
using Gaussian kernel-based locally linear regression. Then the regularized version of fitted
Q-iteration is used to find the optimal control policy. Both model-based and model-free algo-
rithms are proposed. The model-based approach first estimates the visual-motor model and
uses it to generate samples for the RFQI algorithm, while the model-free approach uses sam-
ples from directly interacting with the robot. Without tuning the regularization parameter
in the RFQI algorithm and the kernel width parameter the RL based algorithms underper-
form the linear controller, which has access to the exact visual-motor model. Model selection
needs to be applied to select the best model out of different regularization and kernel width
parameters, then the RL based approaches outperform the linear controller.

3-6-1 Relevant learning control approaches to the project

This section presents two examples of learning control. These are relevant to the project, since
they use the same robotic platform. Both employ automatic controller tuning for the inverted
pendulum problem, learning approaches have been used to automatically tune controllers. [40]
uses a model-free approach, while [41] uses a model-based approach for the controller tuning
problem.
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In [40] an automatic controller tuning framework for tuning state feedback controllers on a
real a robot is proposed. The authors propose a parametrized LQR realization of an state
feedback controller. An initial set of parameters is automatically tuned by solving an op-
timization problem addressed with Entropy Search (ES), an information-efficient Bayesian
optimization method, that leverages the acquired data when only a limited number of exper-
iments re available. The authors demonstrate the effectiveness of the method on a robotic
platform, that consist on a humanoid robot balancing an inverted pole. The pole states are
estimated using a motion capture system, which provides low-latency data at 200Hz. This
approach can be classified as model-free. An initial linearized model of the plant is used, but
this model is not updated during the controller learning process.

In [41] a model-based policy search framework (PILCO)[42] is used to automatically tune mul-
tivariate PID controllers. PILCO is a model-based RL framework for data-efficient learning
of control policies int continuous state-control spaces. Based on collected data, a probabilistic
model of the system dynamics is learned. The proposed method is flexible with respect to
different PID structures.
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Chapter 4

Automatic visual feature extraction

Introducing learning in perception can alleviate problems in the vision-based robot control
system listed in Chapter 2. In visual servoing applications extracting control relevant infor-
mation from the high-dimensional input data has a crucial role in the success of the control
algorithm. Extracting relevant information of the high-dimensional input data in visual ser-
voing application poses a serious challenge. A lot of work has been carried out for designing
appropriate features for robotic manipulation tasks.

In general it is also important for learning robots in unstructured and dynamic environments
to be able to extract control-relevant information from sensory readings. In order to learn by
trial and error visual sensory readings have to be processed automatically. Various approaches
have been taken to introduce learning in the perception part of the vision-based robot control
pipeline: feature extraction, feature detection and tracking (Figure 4-9). Learning the visual
features from real world data can give flexibility to the method on how visual input can be
used, what tasks it can learn to perform [8].

In recent years results from computer vision research have transformed robot learning. These
algorithms deal with the high-dimensional image data by learning a lower dimensional feature
representation. The results of deep architectures for passive computer vision tasks such as
object recognition and scene segmentation have been transferred to robotic applications. Deep
neural networks made RL algorithms able to cope with the high-dimensionality of real world
robotic applications.

This chapter first introduces representation learning techniques within computer vision with a
focus on deep neural networks. First the basic concepts of neural networks and deep learning
are presented. This is followed by the distinction of supervised and unsupervised learning,
with the introduction to relevant models (CNN, autoencoders) to the visual servoing frame-
work. Lastly the concept of a special instance of representation learning, state representation
learning is discussed.
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4-1 Representation learning in computer vision

In machine learning representations are used to transform the input data to a mathematical
form, which can be then effectively used by a learning algorithm (e.g classifier). The perfor-
mance of the machine learning algorithm relies heavily on the representation, finding a good
representation can facilitate discovering structure in the input data by the learning algorithm
[43].

The first representations were based on feature engineering, which required careful hand-
crafted design. In contrast representation learning aims at extracting useful information from
the input for a given task automatically, with minimal human engineering. Features are
learned directly from data. The two main approaches to representation learning are super-
vised and unsupervised learning. Supervised learning is a teacher-based learning method:
manually defined labelled examples are provided to learn the mapping between the input and
the output. In contrast in unsupervised learning no labels are provided, learning is self-taught,
the algorithm has to discover statistical structure in observed data . The objective function is
defined as the reconstruction loss. Unsupervised representation methods include: sparse cod-
ing, autoencoders, restricted Boltzmann machines [44]. Figure 4-2 compares representations
in the traditional and the novel computer vision pipeline.

Figure 4-1: Deep learning as a form or representation learning (from [45])

In the last two decades multi-layer neural network based feature extraction has achieved
unforeseen performance in various computer vision applications (e.g.,object detection, scene
segmentation). The main key-points in the success of deep neural network based learning
algorithms applied to computer vision tasks are the works of LeCun et al.,[46] and Hinton
et al., [47]. In [46] it was shown that stochastic gradient descent can be used in supervised
learning algorithms to discriminatively train large convolutional neural networks. In [47] it
was demonstrated that unsupervised pre-training can accelerate the subsequent supervised
learning. The increased computational power from GPUs compared to CPUs has also con-
tributed greatly to the success of today’s algorithms. The major breakthrough of using deep
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neural networks was computer vision was in 2012, when a CNN outperformed traditional
classification methods by a large margin on the ImageNet image classification benchmark
[48]. Since then it has been shown that using visual features extracted from convolutional
neural networks trained on large training data sets can lead to an increased performance in
several computer vision tasks, such as segmentation and detection. Deep learning approaches
to representation learning have been studied intensively in the last few years. An extensive
overview of DL different DL approaches and applications is given in [45]. Figure 4-1 illustrates
how deep learning is related to other machine learning methods.

Figure 4-2: Representations in the traditional and in the novel computer vision algorithms

4-2 Neural networks

Neural Networks (NN) have been initially proposed as a way of modelling biological neural
systems, but has found its applications within machine learning tasks. Generally an artificial
neural network is a programming paradigm that is inspired by information processing in the
biological nervous system, applied for learning from data [49].

The basic computational unit of neural networks are artificial neurons (depicted on Figure
4-3), which are based on the neurons of the brain. An artificial neuron takes several weighted
inputs (xi), and computes a function g (g) of the weighted sum of the received inputs. The
weights are denoted by ωi. This function is called the activation function or non-linearity. By
using an appropriate activation function at the output of the neuron, a single neuron can be
turned into a linear classifier. Commonly used activation function include the Sigmoid, the
Tanh, Softmax and the ReLu functions. Until recently the Sigmoid function was the most
popular choice for an activation function. In recent years the ReLu activation function have
become a popular alternative, due to its improvement in convergence [48].

Neural networks are modeled as a collection of neurons, organized layer-wise. Different NN
architectures exist based on the connections between the neurons of different layers. The only
restriction on the NN architecture is that cycles are not allowed, because that would lead to
an infinite loop during computation.
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Figure 4-3: The artificial neuron model

The most common layer architecture type is the fully-connected neural network (depicted
on Figure 4-4). In a fully connected neural networks the adjacent layer neurons are all
pairwise connected, but neurons within the same layer have no connections. Other neural
network architectures include networks with feedback connections (recurrent neural networks)
and stochastic networks (restricted Boltzmann machines).The input to the neural network is
transformed through a series of hidden layers during the forward pass. The last layer is called
the output layer. The output of unit i within layer l can be computed as the following:

yl
i = g(z(l)

i ) zi(l) =
m(l−1)�

k=1
w

(l)
i,kyl−1

k + wl
i,0 (4-1)

where g is the activation function, wl
i,k is the weighted connection between neurons, wl

i,0 is
the bias term, l and l − 1 are connecting layers.

The adjacent layers form a network, and can be represented by a composition of functions,
which form a chain. The overall length of the this chain is called the depth of the network.

Figure 4-4: Fully-connected neural network
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4-3 Motivation for Deep Neural Networks

Increasing the size of the neural network (number of layers, neurons) is motivated by the gain
in capacity, the number of representable functions increases with the size of the network. The
increased number of parameters also comes with increased expressiveness, by using a lot of
parameters in the neural network any decision function in data space can be approximated.

A deep neural network (DNN) is a feed-forward artificial neural network that has more than
one layer of hidden units between its inputs and ints outputs. Increasing depth in neural
networks was inspired by how humans perceive the world, representing the world in terms of
hierarchical structure: concepts at one level of abstraction as composition of concepts at lower
levels. Deep architectures were motivated by the goal to automatically discover abstractions
from lowest to highest level concepts.

Deep architectures are well-suited to represent higher-level abstractions, because of the re-
usability and composition of features.

In machine learning applications typically the number of possible configurations of variables
is much larger than the number of training examples (curse of dimensionality). Compared
to classical machine learning approaches the deep learning uses two prior assumptions about
the network architecture to confront the this problem: distributed representation and deep
architecture [45] .

In recent year deep learning has become a popular method for various machine learning
applications replacing traditional methods due to the increased achieved performance (e.g.,
computer vision applications, natural language processing, time series forecasting).

4-4 Supervised Neural Networks

In case of supervised learning, a training set of input-output pairs is provided to the network�
(x(1), y(1), (x(2), y(2)), .., (x(m), y(m))

�
,where m is the number of examples, x is the input

and y is the labelled output. During the training the network weights are adjusted using the
backpropagation algorithm [45].

4-4-1 Supervised Convolutional Neural Networks

Convolutional neural networks (CNN) are a type of feedforward neural networks. In recent
years deep convolutional neural networks (DCNN) have become the most popular approach
to extract features from images, since they allow learning rich feature representation of input
data with little preprocessing. CNNs have a wide application range (e.g., image and video
recognition systems, natural language processing, recommender systems and deep reinforce-
ment learning for robotics).

CNNs are inspired by the localized receptive field in the visual cortex. The basic concept
behind CNNs is describing the image in a hierarchical structure, bottom-up connections can
be used to infer high-level concepts (objects on image) from low-level features (edges). CNNs
have two main properties: weight sharing and local connectivity.
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Local connectivity CNNs exploit the topological structure of images inspired by the human
vision system. Based on the 2D (in case of RGB-D 3D) structure of the input images, lo-
cal receptive fields are defined, which are only sensitive to smaller regions in the visual field,
reflecting the spatial dependencies between neighbouring pixels. This locally connected struc-
ture is also motivated by the curse of dimensionality, which comes with the high dimensional
image data. By restricting unit connections between hidden layers, the number of trainable
parameters in the network compared to the fully-connected network. In the network structure
this means that the inputs in the units of a hidden layer (l) are restricted to a subset (recep-
tive field) of the units of the previous layer (l-1) (Figure 4-5). This is the local connectivity
property [50].

Weight sharing CNNs also exploit the stationary property of natural images, meaning that
the statistics of one part of the image are the same as any other part. As a result the learned
feature detectors (filters) can be applied anywhere on the input image. Due to weight sharing,
relatively few parameters may be necessary to describe the behaviour of such a convolutional
layer [50].

Figure 4-5: Convolutionial and pooling layers in the CNN architecture (from [50])

CNN architecture

Convolutional neural networks consist of tree main types of layer: the convolutional layers,
the pooling layers and optionally fully-connected layers. Complex architectures can be built
by stacking multiple layers of these together [51].
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In the simplest case a convolutional neural network consists of a convolutional layer, an
activation function (ReLu), a pooling layer and a fully-connected layer.

The convolutional layer the input image is repeated convolved with a linear filter, a bias
term is added and a non-linear function is applied. The output of the convolutional layer is
the feature map. Each hidden layer is composed of multiple feature maps hk, k = 0, ..K.

The pooling layer is a form of down-sampling. Each feature map is subsampled typically
with mean or max operation into a set of non-overlapping rectangles. The pooling layers
outputs the mean/maximum value for each sub-region. Sub-sampling decreases the compu-
tational need for upper layers and provides a form of translational invariance.

Since its introduction multiple convolutional neural network architectures have been intro-
duced. The AlexNet is a CNN architecture consisting of 5 layers, the VGG is is an extended
architecture, consisting of 16 convolutional layers.

By removing the classification and pooling layers deriving generic features across datasets
becomes possible, which can be applied in robotics. It has been shown that CNNs trained
on natural images have roughly the same Gabor filters and color blobs on the first layer for
various datasets. It has been established that earlier layers in the hierarchy more general
features are learned while later layers learn more specific ones. Removing the aggregations
(pooling) and the classification layers results in convolutional filters which can be used to
derive generic features across datasets [52].

Application of supervised deep neural networks in visual servoing

Most deep learning research has been carried out for recognition/classification tasks, where
regions of interest (bounding box) are first extracted, then fed into a neural network for
determining the object category. In robotic manipulation object detection and object pose
estimation are needed, where a specific image has to be localized on the input image and then
the orientation of the object is also often needed to be determined (e.g. for grasping). In
object detection the biggest improvement came from the fusion of deep learning and classical
detection methods (R-CNN algorithm)[53] ,

Perception learning based visual servoing requires the integration of subcomponents of passive
visual tasks (e.g.,segmentation, recognition, pose estimation) into one pipeline. In this case the
feature extraction, detection and tracking subproblems of the perception part are integrated
in one learning algorithm.

This poses several challenges. One of these is the scarcity of labelled data and processing of
RGB-D data. Pose estimation from RGB-D data using CNN structures have been proposed
by several authors. Notable recent approaches of learned 6D pose include the self-learn RCNN
network. [54], [53]

In [54] the self-learn RCNN algorithm is presented for 6D pose estimation. The algorithm
achieves pose estimation with a rotational error of 8.5 deg and a translational error of 0.03m.
The scarcity of training data is resolved by an automated system for generating and labelling
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datasets for training CNNs. This is achieved by proposing a phsysics simulator that uses the
information from camera, calibration, shelf or table localization to setup an environment and
performs physics simulation to place objects at realistic configurations. Then images of scenes
are rendered to generate a synthetic dataset for training an object detector. This approach
also opens up the possibility of a lifelong self-learning system that uses the object detector
trained with the simulator to perform a robust multi-view pose estimation. The pipeline
taken from the paper is depicted on Figure 4-6.

Figure 4-6: The self-learn RCNN algorithm (from [54])

In [53] the SegICP algorithm is presented for 6D pose estimation. The algorithm achieves
estimation errors on the order of 5 deg and 0.01m and the integrated semantic segmentation
and object pose estimation operates at 4−14Hz. Their approach leverages multi-view RGB-D
data and self-supervised, data-driven learning. The proposed system can reliably estimate the
6D pose of objects under a variety of scenarios. The algorithm first segments the object from
a scene by feeding multiple-view images to a deep neural network and then fits a 3D model
to a a segmented point cloud and outputs the object’s 6D pose. This is the registration step.
Each color image is then fed into a convolutional network for 2D object segmentation. The
point cloud then goes through background removal and then it is aligned with a pre-scanned
3D model to obtain its 6D pose. The algorithm pipeline taken from the paper is depicted on
Figure 4-7.

4-5 Unsupervised Neural Networks

In unsupervised feature learning no target values are provided, the algorithm has to discover
structure in the data itself. The motivation behind using unsupervised learning in robotics is
that once a good high-level representation is learned, it could facilitate other learning tasks
(e.g., supervised or reinforcement learning). It can be also used to initialize or regularize in
the context of supervised learning systems. By using unsupervised learning as a pre-training
step for processing the input data, the parameters of a supervised or reinforcement learning
algorithm in a region from where local optimization (e.g. gradient descent) would yield good
solutions [44].
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Figure 4-7: The SegICP algorithm (from [53])

The aim of unsupervised representation learning algorithms is to disentangle unknown factors
of variations automatically. Factors of variations are different aspects of the data that can
vary separately and often independently [43].

In unsupervised representation learning there is a distinguishment between sparse overcom-
plete and dense undercomplete representations. PCA is a dense undercomplete representation.
The motivation for sparse representation is that it leads to an increases generalization power,
the number of possible configurations increase and the effective dimensionality can vary in
input region. A sparse representation means that only small subset of neurons are active
at once, which leads to computational efficiency. It has been shown also that sparse auto-
encoders gave rise to more invariant representations, meaning that features are less sensitive
to input transformations [43].

Principle Component Analysis

Principle component analysis (PCA) is an unsupervised learning technique for dimensionality
reduction, and has been applied to a broad class of computer vision problems. PCA projects
each input vector to low-dimensional coordinate vector defining low dimensional hyperplane
in input space, where density is assumed concentrated.

4-5-1 Autoencoders

An autoencoder is a neural network that is trained to attempt to copy its input x to its output
r. It has a hidden layer h that describes a code used to represent the input. The network
consists of two parts: and encoder function h = f(x) and a decoder function r = g(h).
The training objective can be expressed as minimizing the loss penalizing the output being
dissimilar from the input:

L(x, g(f(x))) (4-2)
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Figure 4-8: The autoencoder structure (from [50])

The interest is not in the output of the encoder, but on the code, the internal representation
h. By placing constraints on the network, such as by limiting the number of hidden units,
the aim is to discover interesting structure about the input data. An autoencoder is called
undercomplete, if its code dimension is less than the input dimension.

Various methods have been proposed to prevent learning identity, these include explicit and
implicit weight regularization, adding noise to the encoding (denoising autoencoder) and
adding sparsity constraint (sparse autoencoder) on the learned code [44].

Desirable properties of the representation learned by the autencoder include sparsity, small-
ness of derivative of the representation and robustness to noise and to missing inputs. Different
types of regularized autoencoders have been proposed to achieve this properties [45].

In deep autoencoders, multi-layer networks are used for the encoder or decoder functions. For
example [8] uses a CNN architecture for the encoder function.

The sparse autoencoder (SAE) is an autoencoder whose training criterion involves a spar-
sity penalty Ω(h) on the code layer in addition to the reconstruction error:

L(x, g(f(x))) + Ω(h) (4-3)

Sparse autoencoders are typically used to learn features for classification. [45].
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The denoising autoencoder (DAE) has a modified reconstruction error term. The input is
corrupted x̃. The denoising autoencoder must undo this corruption to reconstruct the original
input. This denoising training forces the encoder and decoder functions to implicitly learn
the structure of the input data [45]. Denoising autoencoders can be used to robustify the
learning algorithm. In case of the denoising autoencoder the loss function takes the following
form:

L(x, g(f(x̃))) (4-4)

The Variational Autoencoder (VAE) combines deep learning with Bayesian inference. The
motivation behind VAEs is to confront the scarcity of high dimensional real-world data. In
contrast to other encoders, which are deterministic, the VAE is stochastic. It consists of a
probabilistic encoder NN and a generative decoder NN.

4-6 State representation learning in robotics

Previous RL based visual servoing approaches relied on hand-crafted features for extracting
control relevant information from the high dimensional input data. This provided them with
only limited capabilities (3-6).

In recent years various methods have been proposed to extract lower dimensional, control-
relevant information from images. State representation learning (SRL) is an instance of
representation learning concerned with finding an appropriate state representation for control
design in the RL problem. The motivation behind these algorithms is to extract a lower
dimensional, compact state representation from the high dimensional sensory input without
relying on specific human expert knowledge.

In these approaches the perception part of the visual servoing pipeline is replaced by a state
representation learning algorithm , which extracts control relevant information from raw
visual data. This is then fed directly to the control algorithm. Figure 5-1 depicts how state
representation learning fits in the traditional visual servoing pipeline (Figure 2-6).

In contrast to CNN based supervised learning approaches, [53],[54] the aim of state represen-
tation learning is not the extraction of 6D pose information, which is more closely related to
the tradition visual servoing pipeline.

In [55] explicit knowledge about physics is given to the learning algorithm through a set of
robotic priors. This makes the learning problem tractable by reducing its dimensionality .

Many approaches use state dimensionality reduction, exploiting the assumption that in a lot
of cases the high dimensional sensory data is intrinsically low dimensional. Autoencoders
are often employed to obtain a lower dimensional representation from the raw sensory read-
ings [56], [8], [57]. The lower dimensional state representation is obtained by training the
autoencoder to reconstruct the sensor input. A control appropriate state representation can
be obtained by specifying constraints on the reconstruction. In [8] a smoothness penalty is
added to the reconstruction loss following [55] to constrain the features. In [57] variational
and denoising autoencoders are used to reduce the dimension of input data and to automat-
ically extract relevant state representation. The main motivation for using autoencoders to
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compress the sensory readings is that high dimensional input domain (vision, tactile) contains
correlated, non-relevant dimensions, where error metrics are hard to define.

Another approach is to use non-parametric kernel-based algorithms, which perform operations
on kernel values. This makes them invariant to the high dimensionality, without the separate
step of dimensionality reduction [58].

.

Figure 4-9: State representation learning

All approaches within state representation learning aim at constructing a lower dimensional
representation from the high dimensional observations space with a non-linear mapping φ :
Z → X. Requirements for a good state representations X are being Markov, being able to
represent the true value of the current policy well enough for policy improvement, generalize
to unseen states with similar features and low dimensionality [30].

In the next chapter some examples of state representation learning will be presented under
model-based deep reinforcement learning section.
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Chapter 5

Deep reinforcement learning

For autonomous robots the aim is to find optimal closed-loop policies from raw visual infor-
mation in an end-to-end fashion. So far, Deep Reinforcement Learning (DRL) has been the
most promising approach to achieve this.

DRL combines deep neural networks with reinforcement learning. In image based DRL meth-
ods learning techniques are applied in both the perception and the control. Neural networks
can be for representing the state-action value functions [5],[56], the policy [27] or for the
forward model of the dynamics [59].

The first DRL algorithm was the DQN network [5], which combined a deep network with a
value function based RL method. It was developed by DeepMind for the Atari 2600 games.
They demonstrated that a single model can be used to automatically learn policies for different
games, with different environment states and action sets. However translating the success of
the DQN algorithm to real world problems is not straight-forward. The real-world applications
DQN is constrained by the sample-inefficiency of model-free algorithms. Model-free DRL
algorithms do not learn a predictive model of state transition dynamics, therefore they have
the inherent problem of data-inefficiency of model-free RL algorithms [25].

Model-based DRL approaches have also been proposed [60], [61], [62]. In contrast to model-
free approaches, these learn the underlying dynamics that govern the interaction between
the robot and the environment. Model-based DRL approaches attempt to learn a dynamical
model solely on pixel information by employing a deep neural network structure. Subsequently
a control policy is optimized for this learned dynamics network. This is also the source for
the main drawback of these methods. The quality of the policy depends on the quality of the
learned model [25].

This chapter presents recent image based closed-loop DRL algorithms, where a control policy
is obtained from raw visual data. In the first section model-free DRL approaches are collected
and the DQN algorithm is presented, along with the DDPG algorithm. In the second section
some examples of recent model-based DRL approaches are presented.
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Figure 5-1: Comparison of end-to-end vs state representation learning algorithms based on the
traditional visual servoing pipeline

5-1 Model-free deep reinforcement learning approaches

Deep reinforcement learning on image data has first been applied in a model-free context.
Most of these approaches are value-function based, they first estimate the value function and
the policy is derived from the estimated value function [56], [5].

The DQN network was he first RL algorithm to tackle the high-dimensional state space
problem. However it did not solve the problem of high-dimensional action spaces in RL
problems, the action set in these games was quite limited. In [56] the action set is also
discrete. A algorithm learns to control slot cart with a discrete action set based on raw
images.

Various extensions of the original DQN algorithm have been proposed. A large part of these
extensions concentrate on translating the success of the DQN algorithm to high-dimensional
action spaces (DDPG algorithm [27], DDAC algorithm, Double DQN algorithm).

The DQN algorithm

In the DQN network [5] value-function based RL is combined with a deep neural network.
The DQN algorithm trains a CNN to approximate the highly non-linear Q function with
online gradient descent approach based on a large number of interactions with system. A
GPU based CNN is employed to train a RL algorithm to play ATARI games directly from
84x84 pixel 60Hz video input (5-2).

The input to the network is stack of raw pixels from last 4 frames, the output is Q(x, u) for 18
joystick/button positions. The reward is defined as the change in the score for the given step.
The environment states in the games are represented by four subsequent game images. The
subsequent images are needed for velocity information. By using the image data, rather than
a smaller set of game-specific state environments as states, a general framework for learning
can be obtained. This allows generalization across different tasks, allows the same network to
be used for different games. On the other hand this makes the dimensionality of the problem
very large. A CNN is used to confront the high dimensionality of the state space in the value
function approximation method.
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Figure 5-2: The CNN structure in the DQN algorithm (from [5])

The CNN architecture contains three convolutional layers, followed by two fully connected
layers. The pooling layers are removed,since they are responsible for translation invariance,
which would make the network becomes insensitive to the location of an object in the image.

Previous attempts using neural networks had been unsuccessful due to convergence problems.
The DQN algorithm provides a stable solution to deep neural network based value function
based RL. The key ideas to the success of the DQN algorithm are the use of experience replay
and using a a target network. Based on experience replay approach in the RL framework,
state transitions are stored in the replay memory and from this memory random mini-batch
transitions are sampled. This ensures learning from past policies, compared to online learning.
A separate target network is used for providing target values to the main estimator network
during learning. The reason for this is to prevent stability problems caused by coupling
between the target and estimated Q values. The Q learning targets are calculated with
respect to the old, fixed parameters, independently of the estimated Q values.

The DDPG algorithm

The DDPG algorithm is a model-free, actor-critic algorithm, which is an extension to the
value-based DQN algorithm. The motivation behind it was to create an algorithm that can
be used in high dimensional action spaces.

The DDPG algorithm is an actor-critic algorithm, a separate parametrized action policy
(actor) is learned in addition to the Q function (critic). Two separate neural networks are
used for the policy and the value-function. The input to the policy network is the current
state, the output is the action, represented by single real value. The value-function network
calculates the value function based on the current state and the action provided by the policy
network. A TD update rule is used to update the value-function network.
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5-2 Model-based deep reinforcement learning approaches

When RL is applied to real world robotic problems, on of the main challenges that has to
solved is to make the algorithm sample effectively, since real world experiments are costly. The
main motivation behind learning a forward model of the dynamical system is that it provides
a way to increase data efficiency, making the algorithm be able to learn from a small number
of trials [25]. The learned model can be used for internal simulations and policy learning,
decreasing the need for rollouts, which are costly in real robotics problems. Learning forward
models have been applied previously in robotics problems [22]. In the past few years many
model-based reinforcement learning algorithms using deep learning have been proposed [61],
[59], [63], [62].

Most of these approaches use deep architectures to learn a compact lower dimensional state
representation from the high dimensional visual input information as in Section 4-6, and learn
a predictive model of the forward dynamics. In contrast to the model-free DRL algorithms,
these algorithms have a separate component for state representation learning and policy
learning.

Deep spatial autoencoders for visuomotor learning

In [8] a method is presented to directly learn state representations from raw sensory data. The
motivation behind the proposed method is learning a task-appropriate state representations
for control without human supervision. These task-appropriate state representations are the
poses of the relevant objects in the world using Cartesian coordinates.

The proposed method uses a deep autoencoder to acquire a set of feature points describing
the locations of the objects relevant to the current task, which are then used to learn the
motor skills for the given task. The encoder is constrained to learn a lower dimensional state
representation and by performing a specific operation (spatial soft arg max) on the output of
the last convolutional layer, the pixel locations with the maximum activations are returned.
Figure 5-3 represents the spatial autoencoder structure, taken from the paper.

Figure 5-3: Deep spatial autoencoder structure used in [8]

Additionally, a smoothness penalty is added to the reconstruction loss of the deep spatial
autoencoder, in order to make the learning algorithm able to predict the dynamics of the
state representation.

For the control part, the algorithm builds on previous results [60]. The Guided Policy Search
approach is used. First local linear-Gaussian controllers are trained for multiple initial posi-
tions, generating multiple solutions. Then the final policy for a specific task is obtained by
using supervised algorithm that uses data from the linear controllers. This approach makes
the algorithm be able to generalize to new end goal positions.
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The set-up is similar to traditional visual servoing methods, where features are extracted
and fed into a controller, with the main difference that here the features are learned from
real-world data and in contrast to most visual servoing approaches, camera calibration is not
required.

Learning deep dynamical models from image pixels

In [61] a model-based DRL algorithm is proposed, which allows learning closed-loop policies in
continuous state and action spaces directly from pixel information. The two main components
of the method are a deep dynamical model (DDM) and an Model Predictive (MPC) controller.
The DDM is used to make long-term predictions using a learned forward model, which are
fed into the MPC controller, which determines the optimal action.

In the DDM approach the feature mapping from high dimensional image input to a lower
dimensional representation is jointly learned with a forward model in this lower dimensional
feature space. A deep auto-encoder is used to learn the lower dimensional, compact represen-
tation. For learning the predictive model in the lower dimensional features space, a non-linear
autoregressive feed-forward neural network is used. It is assumed that future features depend
on an n-step history of past features and control inputs. Therefore the DDM has three sets of
parameter vectors the encoder, the decoder and the predictive model parameters, which are
found by jointly optimizing the squared reconstruction error of the deep auto-encoder and
the prediction errors of the forward model.

Deep Visual Foresight for Planning Robot Motion

In [59] the motivation behind their approach is to replace the standard robotic manipulation
pipeline with learning algorithm, based on the success of learning algorithms for passive
perception tasks. The setup is similar to [61], the main components of the learning algorithm
are a predictive model of raw sensory observations and MPC control. The learning algorithm
is completely self-supervised: no reward function, no image of goal, nor the ground-truth
object pose information is defined beforehand. The main contribution of the paper is a deep
video-predictive model, that can be used in real robotic system to manipulate previously
unseen objects.
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